Trait nom8::Parser

source ·
pub trait Parser<I, O, E> {
Show 20 methods fn parse(&mut self, input: I) -> IResult<I, O, E>; fn by_ref(&mut self) -> ByRef<'_, Self>
    where
        Self: Sized
, { ... } fn value<O2>(self, val: O2) -> Value<Self, O, O2>
    where
        Self: Sized,
        O2: Clone
, { ... } fn output_into<O2: From<O>>(self) -> OutputInto<Self, O, O2>
    where
        Self: Sized
, { ... } fn recognize(self) -> Recognize<Self, O>
    where
        Self: Sized
, { ... } fn with_recognized(self) -> WithRecognized<Self, O>
    where
        Self: Sized
, { ... } fn span(self) -> Span<Self, O>
    where
        Self: Sized,
        I: Location + Clone
, { ... } fn with_span(self) -> WithSpan<Self, O>
    where
        Self: Sized,
        I: Location + Clone
, { ... } fn map<G, O2>(self, g: G) -> Map<Self, G, O>
    where
        G: Fn(O) -> O2,
        Self: Sized
, { ... } fn map_res<G, O2, E2>(self, g: G) -> MapRes<Self, G, O>
    where
        Self: Sized,
        G: FnMut(O) -> Result<O2, E2>
, { ... } fn map_opt<G, O2>(self, g: G) -> MapOpt<Self, G, O>
    where
        Self: Sized,
        G: FnMut(O) -> Option<O2>
, { ... } fn flat_map<G, H, O2>(self, g: G) -> FlatMap<Self, G, O>
    where
        G: FnMut(O) -> H,
        H: Parser<I, O2, E>,
        Self: Sized
, { ... } fn and_then<G, O2>(self, g: G) -> AndThen<Self, G, O>
    where
        G: Parser<O, O2, E>,
        Self: Sized
, { ... } fn verify<G, O2: ?Sized>(self, second: G) -> Verify<Self, G, O2>
    where
        Self: Sized,
        G: Fn(&O2) -> bool
, { ... } fn context<C>(self, context: C) -> Context<Self, O, C>
    where
        Self: Sized,
        C: Clone,
        E: ContextError<I, C>
, { ... } fn complete(self) -> Complete<Self>
    where
        Self: Sized
, { ... } fn err_into<E2: From<E>>(self) -> ErrInto<Self, E, E2>
    where
        Self: Sized
, { ... } fn dbg_err<C>(self, context: C) -> DbgErr<Self, O, C>
    where
        C: Display,
        Self: Sized
, { ... } fn and<G, O2>(self, g: G) -> And<Self, G>
    where
        G: Parser<I, O2, E>,
        Self: Sized
, { ... } fn or<G>(self, g: G) -> Or<Self, G>
    where
        G: Parser<I, O, E>,
        Self: Sized
, { ... }
}
Expand description

All nom parsers implement this trait

The simplest way to implement a Parser is with a function

use nom8::prelude::*;

fn success(input: &str) -> IResult<&str, ()> {
    let output = ();
    Ok((input, output))
}

let (input, output) = success.parse("Hello").unwrap();
assert_eq!(input, "Hello");  // We didn't consume any input

which can be made stateful by returning a function

use nom8::prelude::*;

fn success<O: Clone>(output: O) -> impl FnMut(&str) -> IResult<&str, O> {
    move |input: &str| {
        let output = output.clone();
        Ok((input, output))
    }
}

let (input, output) = success("World").parse("Hello").unwrap();
assert_eq!(input, "Hello");  // We didn't consume any input
assert_eq!(output, "World");

Additionally, some basic types implement Parser as well, including

Required Methods§

A parser takes in input type, and returns a Result containing either the remaining input and the output value, or an error

Provided Methods§

Treat &mut Self as a parser

This helps when needing to move a Parser when all you have is a &mut Parser.

Example

Because parsers are FnMut, they can be called multiple times. This prevents moving f into length_data and g into complete:

pub fn length_value<'i, O, E: ParseError<&'i [u8]>>(
    mut f: impl Parser<&'i [u8], usize, E>,
    mut g: impl Parser<&'i [u8], O, E>
) -> impl FnMut(&'i [u8]) -> IResult<&'i [u8], O, E> {
  move |i: &'i [u8]| {
    let (i, data) = length_data(f).parse(i)?;
    let (_, o) = g.complete().parse(data)?;
    Ok((i, o))
  }
}

By adding by_ref, we can make this work:

pub fn length_value<'i, O, E: ParseError<&'i [u8]>>(
    mut f: impl Parser<&'i [u8], usize, E>,
    mut g: impl Parser<&'i [u8], O, E>
) -> impl FnMut(&'i [u8]) -> IResult<&'i [u8], O, E> {
  move |i: &'i [u8]| {
    let (i, data) = length_data(f.by_ref()).parse(i)?;
    let (_, o) = g.by_ref().complete().parse(data)?;
    Ok((i, o))
  }
}

Returns the provided value if the child parser succeeds.

Example
use nom8::character::alpha1;

let mut parser = alpha1.value(1234);

assert_eq!(parser.parse("abcd"), Ok(("", 1234)));
assert_eq!(parser.parse("123abcd;"), Err(Err::Error(("123abcd;", ErrorKind::Alpha))));

Convert the parser’s output to another type using std::convert::From

Example
use nom8::character::alpha1;

 fn parser1(i: &str) -> IResult<&str, &str> {
   alpha1(i)
 }

 let mut parser2 = parser1.output_into();

// the parser converts the &str output of the child parser into a Vec<u8>
let bytes: IResult<&str, Vec<u8>> = parser2.parse("abcd");
assert_eq!(bytes, Ok(("", vec![97, 98, 99, 100])));

If the child parser was successful, return the consumed input as produced value.

Example
use nom8::character::{alpha1};
use nom8::sequence::separated_pair;

let mut parser = separated_pair(alpha1, ',', alpha1).recognize();

assert_eq!(parser.parse("abcd,efgh"), Ok(("", "abcd,efgh")));
assert_eq!(parser.parse("abcd;"),Err(Err::Error((";", ErrorKind::OneOf))));

if the child parser was successful, return the consumed input with the output as a tuple. Functions similarly to recognize except it returns the parser output as well.

This can be useful especially in cases where the output is not the same type as the input, or the input is a user defined type.

Returned tuple is of the format (produced output, consumed input).

Example
use nom8::character::{alpha1};
use nom8::bytes::tag;
use nom8::sequence::separated_pair;

fn inner_parser(input: &str) -> IResult<&str, bool> {
    tag("1234").value(true).parse(input)
}


let mut consumed_parser = separated_pair(alpha1, ',', alpha1).value(true).with_recognized();

assert_eq!(consumed_parser.parse("abcd,efgh1"), Ok(("1", (true, "abcd,efgh"))));
assert_eq!(consumed_parser.parse("abcd;"),Err(Err::Error((";", ErrorKind::OneOf))));

// the second output (representing the consumed input)
// should be the same as that of the `recognize` parser.
let mut recognize_parser = inner_parser.recognize();
let mut consumed_parser = inner_parser.with_recognized().map(|(output, consumed)| consumed);

assert_eq!(recognize_parser.parse("1234"), consumed_parser.parse("1234"));
assert_eq!(recognize_parser.parse("abcd"), consumed_parser.parse("abcd"));

If the child parser was successful, return the location of the consumed input as produced value.

Example
use nom8::input::Located;
use nom8::character::alpha1;
use nom8::sequence::separated_pair;

let mut parser = separated_pair(alpha1.span(), ',', alpha1.span());

assert_eq!(parser.parse(Located::new("abcd,efgh")).finish(), Ok((0..4, 5..9)));
assert_eq!(parser.parse(Located::new("abcd;")),Err(Err::Error((Located::new("abcd;").slice(4..), ErrorKind::OneOf))));

if the child parser was successful, return the location of consumed input with the output as a tuple. Functions similarly to Parser::span except it returns the parser output as well.

This can be useful especially in cases where the output is not the same type as the input, or the input is a user defined type.

Returned tuple is of the format (produced output, consumed input).

Example
use nom8::input::Located;
use nom8::character::alpha1;
use nom8::bytes::tag;
use nom8::sequence::separated_pair;

fn inner_parser(input: Located<&str>) -> IResult<Located<&str>, bool> {
    tag("1234").value(true).parse(input)
}


let mut consumed_parser = separated_pair(alpha1.value(1).with_span(), ',', alpha1.value(2).with_span());

assert_eq!(consumed_parser.parse(Located::new("abcd,efgh")).finish(), Ok(((1, 0..4), (2, 5..9))));
assert_eq!(consumed_parser.parse(Located::new("abcd;")),Err(Err::Error((Located::new("abcd;").slice(4..), ErrorKind::OneOf))));

// the second output (representing the consumed input)
// should be the same as that of the `span` parser.
let mut recognize_parser = inner_parser.span();
let mut consumed_parser = inner_parser.with_span().map(|(output, consumed)| consumed);

assert_eq!(recognize_parser.parse(Located::new("1234")), consumed_parser.parse(Located::new("1234")));
assert_eq!(recognize_parser.parse(Located::new("abcd")), consumed_parser.parse(Located::new("abcd")));

Maps a function over the result of a parser

Example
use nom8::{Err,error::ErrorKind, IResult,Parser};
use nom8::character::digit1;

let mut parser = digit1.map(|s: &str| s.len());

// the parser will count how many characters were returned by digit1
assert_eq!(parser.parse("123456"), Ok(("", 6)));

// this will fail if digit1 fails
assert_eq!(parser.parse("abc"), Err(Err::Error(("abc", ErrorKind::Digit))));

Applies a function returning a Result over the result of a parser.

Example
use nom8::character::digit1;

let mut parse = digit1.map_res(|s: &str| s.parse::<u8>());

// the parser will convert the result of digit1 to a number
assert_eq!(parse.parse("123"), Ok(("", 123)));

// this will fail if digit1 fails
assert_eq!(parse.parse("abc"), Err(Err::Error(("abc", ErrorKind::Digit))));

// this will fail if the mapped function fails (a `u8` is too small to hold `123456`)
assert_eq!(parse.parse("123456"), Err(Err::Error(("123456", ErrorKind::MapRes))));

Applies a function returning an Option over the result of a parser.

Example
use nom8::character::digit1;

let mut parse = digit1.map_opt(|s: &str| s.parse::<u8>().ok());

// the parser will convert the result of digit1 to a number
assert_eq!(parse.parse("123"), Ok(("", 123)));

// this will fail if digit1 fails
assert_eq!(parse.parse("abc"), Err(Err::Error(("abc", ErrorKind::Digit))));

// this will fail if the mapped function fails (a `u8` is too small to hold `123456`)
assert_eq!(parse.parse("123456"), Err(Err::Error(("123456", ErrorKind::MapOpt))));

Creates a second parser from the output of the first one, then apply over the rest of the input

Example
use nom8::bytes::take;
use nom8::number::u8;

let mut length_data = u8.flat_map(take);

assert_eq!(length_data.parse(&[2, 0, 1, 2][..]), Ok((&[2][..], &[0, 1][..])));
assert_eq!(length_data.parse(&[4, 0, 1, 2][..]), Err(Err::Error((&[0, 1, 2][..], ErrorKind::Eof))));

Applies a second parser over the output of the first one

Example
use nom8::character::digit1;
use nom8::bytes::take;

let mut digits = take(5u8).and_then(digit1);

assert_eq!(digits.parse("12345"), Ok(("", "12345")));
assert_eq!(digits.parse("123ab"), Ok(("", "123")));
assert_eq!(digits.parse("123"), Err(Err::Error(("123", ErrorKind::Eof))));

Returns the result of the child parser if it satisfies a verification function.

The verification function takes as argument a reference to the output of the parser.

Example

let mut parser = alpha1.verify(|s: &str| s.len() == 4);

assert_eq!(parser.parse("abcd"), Ok(("", "abcd")));
assert_eq!(parser.parse("abcde"), Err(Err::Error(("abcde", ErrorKind::Verify))));
assert_eq!(parser.parse("123abcd;"),Err(Err::Error(("123abcd;", ErrorKind::Alpha))));

If parsing fails, add context to the error

This is used mainly to add user friendly information to errors when backtracking through a parse tree.

Transforms Incomplete into Error

Example

let mut parser = take(5u8).complete();

assert_eq!(parser.parse(Streaming("abcdefg")), Ok((Streaming("fg"), "abcde")));
assert_eq!(parser.parse(Streaming("abcd")), Err(Err::Error((Streaming("abcd"), ErrorKind::Complete))));

Convert the parser’s error to another type using std::convert::From

Prints a message and the input if the parser fails.

The message prints the Error or Incomplete and the parser’s calling code.

It also displays the input in hexdump format

use nom8::prelude::*;
use nom8::{IResult, bytes::tag};

fn f(i: &[u8]) -> IResult<&[u8], &[u8]> {
  tag("abcd").dbg_err("alpha tag").parse(i)
}

let a = &b"efghijkl"[..];
f(a);

Will print the following message:

alpha tag: Error(Position(0, [101, 102, 103, 104, 105, 106, 107, 108])) at:
00000000        65 66 67 68 69 6a 6b 6c         efghijkl
👎Deprecated since 8.0.0: Replaced with `nom8::sequence::tuple

Applies a second parser after the first one, return their results as a tuple

WARNING: Deprecated, replaced with nom8::sequence::tuple

👎Deprecated since 8.0.0: Replaced with `nom8::branch::alt

Applies a second parser over the input if the first one failed

WARNING: Deprecated, replaced with nom8::branch::alt

Trait Implementations§

A parser takes in input type, and returns a Result containing either the remaining input and the output value, or an error
Treat &mut Self as a parser Read more
Returns the provided value if the child parser succeeds. Read more
Convert the parser’s output to another type using std::convert::From Read more
If the child parser was successful, return the consumed input as produced value. Read more
if the child parser was successful, return the consumed input with the output as a tuple. Functions similarly to recognize except it returns the parser output as well. Read more
Maps a function over the result of a parser Read more
Applies a function returning a Result over the result of a parser. Read more
Applies a function returning an Option over the result of a parser. Read more
Creates a second parser from the output of the first one, then apply over the rest of the input Read more
Applies a second parser over the output of the first one Read more
Returns the result of the child parser if it satisfies a verification function. Read more
If parsing fails, add context to the error Read more
Transforms Incomplete into Error Read more
Convert the parser’s error to another type using std::convert::From
Prints a message and the input if the parser fails. Read more
👎Deprecated since 8.0.0: Replaced with `nom8::sequence::tuple
Applies a second parser after the first one, return their results as a tuple Read more
👎Deprecated since 8.0.0: Replaced with `nom8::branch::alt
Applies a second parser over the input if the first one failed Read more

Implementations on Foreign Types§

This is a shortcut for one_of.

Example

fn parser(i: &[u8]) -> IResult<&[u8], u8> {
    b'a'.parse(i)
}
assert_eq!(parser(&b"abc"[..]), Ok((&b"bc"[..], b'a')));
assert_eq!(parser(&b" abc"[..]), Err(Err::Error(Error::new(&b" abc"[..], ErrorKind::OneOf))));
assert_eq!(parser(&b"bc"[..]), Err(Err::Error(Error::new(&b"bc"[..], ErrorKind::OneOf))));
assert_eq!(parser(&b""[..]), Err(Err::Error(Error::new(&b""[..], ErrorKind::OneOf))));

This is a shortcut for one_of.

Example

fn parser(i: &str) -> IResult<&str, char> {
    'a'.parse(i)
}
assert_eq!(parser("abc"), Ok(("bc", 'a')));
assert_eq!(parser(" abc"), Err(Err::Error(Error::new(" abc", ErrorKind::OneOf))));
assert_eq!(parser("bc"), Err(Err::Error(Error::new("bc", ErrorKind::OneOf))));
assert_eq!(parser(""), Err(Err::Error(Error::new("", ErrorKind::OneOf))));

This is a shortcut for tag.

Example


fn parser(s: &[u8]) -> IResult<&[u8], &[u8]> {
  alt((&"Hello"[..], take(5usize))).parse(s)
}

assert_eq!(parser(&b"Hello, World!"[..]), Ok((&b", World!"[..], &b"Hello"[..])));
assert_eq!(parser(&b"Something"[..]), Ok((&b"hing"[..], &b"Somet"[..])));
assert_eq!(parser(&b"Some"[..]), Err(Err::Error(Error::new(&b"Some"[..], ErrorKind::Eof))));
assert_eq!(parser(&b""[..]), Err(Err::Error(Error::new(&b""[..], ErrorKind::Eof))));

This is a shortcut for tag.

Example


fn parser(s: &[u8]) -> IResult<&[u8], &[u8]> {
  alt((b"Hello", take(5usize))).parse(s)
}

assert_eq!(parser(&b"Hello, World!"[..]), Ok((&b", World!"[..], &b"Hello"[..])));
assert_eq!(parser(&b"Something"[..]), Ok((&b"hing"[..], &b"Somet"[..])));
assert_eq!(parser(&b"Some"[..]), Err(Err::Error(Error::new(&b"Some"[..], ErrorKind::Eof))));
assert_eq!(parser(&b""[..]), Err(Err::Error(Error::new(&b""[..], ErrorKind::Eof))));

This is a shortcut for tag.

Example


fn parser(s: &str) -> IResult<&str, &str> {
  alt(("Hello", take(5usize))).parse(s)
}

assert_eq!(parser("Hello, World!"), Ok((", World!", "Hello")));
assert_eq!(parser("Something"), Ok(("hing", "Somet")));
assert_eq!(parser("Some"), Err(Err::Error(Error::new("Some", ErrorKind::Eof))));
assert_eq!(parser(""), Err(Err::Error(Error::new("", ErrorKind::Eof))));

Implementors§